
1

INF 111 / CSE 121:
Software Tools and Methods

Lecture Notes for Fall Quarter, 2007
Michele Rousseau

Set 5 - Testing
(Some slides adapted from Sommerville 2000 & Scott Miller)

Announcements
Assignment #2 – Will be available this 
week – Due on July 21st

Quiz #1 – Regrades need to be turned in 
by Thursday (7/10)
● Will regrades be accepted after Thursday?

Q i #2 Th d (7/10)

Lecture Notes 5 - Testing 2

Quiz #2 – Thursday (7/10)
● WILL INCLUDE:

◘ All readings assigned since the last quiz not in the “WILL 
NOT INCLUDE LIST”

◘ Slide set 4 & 5

● WILL NOT INCLUDE:
◘ Ch 2 from “The Mythical Man-Month”
◘ Van Vliet Ch. 4 & 10 will not be included on this quiz

Quiz Results
Max 48
Min 13
Median 36
• Not including the student s who did not take it

Lecture Notes 5 - Testing 3

Breakdown of grades

40-44

45-50

Quiz #1

Lecture Notes 5 - Testing 4

0 2 4 6 8 10 12

<30

30-34

35-39

Some perspective
Quiz is worth 5% of your grade
If I miss one can I still get an A?

I suffer from test anxiety – what can I 

Lecture Notes 5 - Testing 5

do?
http://www.studygs.net/tstprp8.htm
http://ub-counseling.buffalo.edu/stresstestanxiety.shtml
http://www.sdc.uwo.ca/learning/mcanx.html
http://www.kidshealth.org/teen/school_jobs/school/

test_anxiety.html

How do I improve my performance on 
Quizzes – and the final?

If you have to miss lecture –
● get notes from your friends

Review lecture slides (take notes)
Do the reading
Attend discussion section

Lecture Notes 5 - Testing 6

Form a study group
Ask questions
● In class
● Email
● Office hours

What if I aced it? WTG!



2

Previous on INF 111…

Quiz #1
More on Testing
● Static Analysis

◘ Code Walkthroughs
◘ Inspections

Lecture Notes 5 - Testing 7

● Issues in Quality Assurance

Today’s Lecture
More on Testing
● Formal Methods
● Fundamental Testing Questions
● Test Adequacy

Coverage Based Testing

Lecture Notes 5 - Testing 8

◘Coverage Based Testing

Issues with Testing own code
Developer tests the code just produced
● Needs to ensure that the code functions properly before 

releasing it to the other developers

Benefits
● Knows the code best
● Has easy access to the code

D b k

Lecture Notes 5 - Testing 9

Drawbacks
● Bias

◘ “I trust my code”
◘ “I always write correct code”

● Blind spots

Possible Solutions:
● Outside Testers
● Walkthroughs / Inspections

Formal Verification

Techniques for proving consistency 
between two software descriptions
● to prove consistency of specification
● to prove correctness of implementation

Lecture Notes 5 - Testing 10

● to prove correctness of implementation

Correctness 
Correct with respect to the specification

Requirements 
Specification

User Needs

Formal Requirements 

analyze properties 
of requirements

informally vaidate 
consistency between 
needs and requirements

informally verify 
consistency between 
formal and informal requirements

Verification with Formal Specs

Lecture Notes 5 -
Testing

11

q
Specification

Architectural 
Specification

Formal Module 
Specifications

System Software 
Implementation

analyze properties 
of modules

verify consistency 
between specifications

verify consistency 
between specification 
and implementation

NOTE: may be multiple 
levels of specification 
and appropriate verification 
at any stage analyze properties 

of module interfaces

Formal Verification / Validation
Some shortcomings
● does not show other qualities

◘ Performace, usability, etc..

● May not scale up 
● only informal techniques for validating against user 

d

Lecture Notes 5 - Testing 12

needs
● subject to assumptions of proof system
● only as good as formal specification
● Not trivial tedious
● Not always cost effective

Generally used on a part of the system
Example: Mathematically Based Verification



3

Mathematically Based Verification

Must have formal specifications
● Notation must be consistent with mathematical 

verification techniques

The programming lang. must have formal 
semantics

Lecture Notes 5 - Testing 13

semantics

This is an intensive process but…
● Can verify correctness

Generally,
● Not cost effective for large systems

Tools for Mathematical Verification
Can it be automated?
● Theorem provers 

◘Assist in developing proofs
●Usually work with a subset of the program
●Not completely automated

Lecture Notes 5 - Testing 14

p y

The problem with Testing
Can’t test exhaustively
● Not feasible to run all those test cases
● Not feasible to validate them once they are run

Want to verify software 
Need to test 

Lecture Notes 5 - Testing 15

Need to decide on test cases 

But,
no set of test cases guarantees absence of bugs,

So,

Testing Techniques
So,

We need to find a systematic approach to 
selecting of test cases that will lead to:
● accurate,

bl h h

Lecture Notes 5 - Testing 16

● acceptably thorough,
● repeatable identification of errors, faults, and 

failures?

Practical Issues
Purpose of testing
● Fault detection
●High assurance of reliability
● Performance/stress/load
●Regression testing of new versions

Lecture Notes 5 - Testing 17

Conflicting considerations
● safety, liability, risk, customer satisfaction, 

resources, schedule, market windows and 
share

Test Selection is a sampling 
technique
● choose a finite set from an infinite domain

Fundamental Testing Questions
Test Criteria:  What should we test?
Test Oracle:  Is the test correct?
Test Adequacy:  How much is enough?
Test Process:  Is our testing effective?

Lecture Notes 5 - Testing 18

How to make the most of limited resources?



4

Test Criteria
Testing must select a subset of test cases 
that are likely to reveal failures
Test Criteria provide the guidelines, rules, 
strategy by which test cases are selected
● actual test data
● conditions on test data
● requirements on test data

Lecture Notes 5 - Testing 19

● requirements on test data

Equivalence partitioning is the typical 
approach
● a test of any value in a given class is equivalent to a 

test of any other value in that class
● if a test case in a class reveals a failure, then any 

other test case in that class should reveal the failure
● some approaches limit conclusions to some chosen 

class of errors and/or failures

Test Oracles
Where does “expected output” come from?

A test oracle is a mechanism for
deciding whether a test case execution

failed or succeeded

Lecture Notes 5 - Testing 20

Critical to testing

Difficult to create systematically
Typically done with a lot of guesswork
● Typically relies on humans
● great dependence on the intuition of testers

Formal specifications make it possible to automate 
oracles

What Does an Oracle Do?
Your test shows cos(0.5) = 0.8775825619

You have to decide whether this answer 
is correct?

You need an oracle

Lecture Notes 5 - Testing 21

You need an oracle
●Draw a triangle and measure the sides
● Look up cosine of 0.5 in a book
●Compute the value using Taylor series 

expansion
●Check the answer with your desk calculator

Test Adequacy

Coverage-Based Testing
● Coverage metrics

◘ when sufficient percentage of the program structure has been 
exercised

Fault-Based Testing
● Empirical assurance

Tells you when to stop testing

Lecture Notes 5 - Testing 22

p
◘ when failures/test curve flatten out

● Error seeding
◘ percentage of seeded faults found is proportional to the percentag

of real faults found

Error-Based Testing
● Independent testing

◘ faults found in common are representative of total population of 
faults

Before the Break
Testing
●Formal Methods
●Fundamental Testing Questions

Lecture Notes 5 - Testing 23

Coverage-Based Testing
Flow Graphs
●Control Flow

◘Partial order of Statement Execution
●Data Flow

◘Flow of values from  Definition to Variables

Lecture Notes 5 - Testing 24

Graph representation of control flow and
data flow relationships



5

1
2
3
4
5
6

function P  return  INTEGER  is
begin

X, Y: INTEGER;
READ(X); READ(Y);
while (X > 10) loop

X := X – 10;

A Sample Program to Test

Lecture Notes 5 -
Testing

25

6
7
8
9

10
11
12
13
14
15

X :  X 10;
exit  when  X = 10;

end  loop;
if (Y <  20  and then X  mod  2 = 0) then

Y := Y + 20;
else

Y := Y – 20;
end  if;
return 2*X + Y;

end  P;

2,3,4 5

6

9´

10

14

T T

F

F 9                   T

F

7

TF

9a 9b

Prog P’s Control Flow Graph (CFG)

Lecture Notes 5 -
Testing

26

12

F

function P  return  INTEGER  is
begin

X, Y: INTEGER;
READ(X); READ(Y);
while (X > 10) loop

X := X – 10;
exit  when  X = 10;

end  loop;

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

if (Y <  20  and  then  X  mod  2 = 0) then
Y := Y + 20;

else
Y := Y – 20;

end  if;
return 2*X + Y;

end  P;

1
2
3
4
5
6
7
8

All-Statements Coverage
Select test cases such that every node
in the graph is visited
● Also called node coverage

◘Guarantees that every statement in the source 
code is executed at least once

Lecture Notes 5 - Testing 27

Selects minimal number of test cases

1 3 7 82 4 5 6 9 10

6 10

T
F

T

7

T
F

At least 2 test cases needed

All-Statements Coverage of P

Lecture Notes 5 -
Testing

28

2,3,4 5

12

14F 9

F
Example all-statements-adequate 
test set:

(X = 20, Y = 10)
<2,3,4,5,6,7,9,10,14>

(X = 20, Y = 30)
<2,3,4,5,6,7,9,12,14>

All-Branches Coverage
Select test cases such that every 
branch in the graph is visited

◘Guarantees that every branch in the source code 
is executed at least once

More thorough than All-Statements 

Lecture Notes 5 - Testing 29

coverage
●More likely to reveal logical errors

1 3 7 82 4 5 6 9 10

2,3,4 5

6 10

14

T
F

9

T

7

T
F

At least 2 test cases needed

All-Branches Coverage of P

Lecture Notes 5 -
Testing

30

2,3,4 5

12

149

F

Example all-branches-adequate 
test set:

(X = 20, Y = 10)
<2,3,4,5,6,7,9,10,14>

(X = 15, Y = 30)
<2,3,4,5,6,7,5,9,12,14>



6

All-Edges Coverage
Select test cases such that every edge
in the graph is visited

◘Takes complex statements into consideration –
treats them as separate nodes

More thorough than All-Branches 

Lecture Notes 5 - Testing 31

coverage
●More likely to reveal more complex logical 

errors

2,3,4 5

6

9b

10

14

T T
F 9a T

7

TF

At least 3 test cases needed

All-Edges Coverage of P

Lecture Notes 5 -
Testing

32

12

FF

Example all-edges-adequate test set:
(X = 20, Y = 10)

<2,3,4,5,6,7,9a,9b,10,14>
(X = 5, Y = 30)

<2,3,4,5,9a,12,14>
(X = 21, Y = 10)

<2,3,4,5,6,7,5,6,7,5,9a,9b,12,14>

All-Paths Coverage
Path coverage
● Select test cases such that every path in the 

graph is visited
● Loops are a problem

◘0, 1, average, max iterations

Lecture Notes 5 - Testing 33

Most thorough…
…but is it feasible?

2 3 4 5

6

9b

10

14

T T
F

9
T

7

TF

Infinitely many test cases needed

All-Paths Coverage of P

Lecture Notes 5 -
Testing

34

2,3,4 5 9b

12

14

F

9a

F
Example all-paths-
adequate test set:

(X = 5, Y = 10)
(X = 15, Y = 10)
(X = 25, Y = 10)
(X = 35, Y = 10)
…

6 10

T
X

Y

YX
X

X

T

7

TF X

X

P’s Control and Data Flow Graph

Lecture Notes 5 -
Testing

35

2,3,4 5 9b

12

14

T

F

9a
T

F
Y

X

Y X

X
Y

T
F

Subsumption of Criteria
C1 subsumes C2 if any C1-adequate 
test T is also C2-adequate
● But some T1 satisfying C1 may detect fewer 

faults than some T2 satisfying C2

Lecture Notes 5 - Testing 36



7

boundary-interior
loop testing

min-max
loop testing

all-paths

all-defs

all-uses

all-DU-paths

all-p-uses all-c-uses

Structural Subsumption Hierarchy

Lecture Notes 5 - Testing
37

all-statements

all-edges

all p uses all c uses

C2
subsumes

all-branchesC1

Subsumes => Stronger than

Moving on.

Equivalence Partitioning &
Boundary Value Analysis
Integration Testing
● Top-Down

Lecture Notes 5 - Testing 38

Top Down
● Bottom Up

Test Criteria
Testing must select a subset of test cases 
that are likely to reveal failures
Test Criteria provide the guidelines, rules, 
strategy by which test cases are selected
● actual test data
● conditions on test data
● requirements on test data

Lecture Notes 5 - Testing 39

● requirements on test data

Equivalence partitioning is the typical 
approach
● a test of any value in a given class is equivalent to a 

test of any other value in that class
● if a test case in a class reveals a failure, then any 

other test case in that class should reveal the failure
● some approaches limit conclusions to some chosen 

class of errors and/or failures

Equivalence Partitioning (EQP)
Testing technique 
●Reduces the # of test cases 

◘Make the # of test cases manageable
◘Systematic derivation of test cases

●Reasonably tests the system

Lecture Notes 5 - Testing 40

Basic Principle: 
Some distinctions don’t make a difference

EQP :  How does it work

Divide inputs into equivalent partitions
● i.e. Find a small # set of representative

input values
● For each Class program behaves in an 

“ i l ”

Lecture Notes 5 - Testing 41

“equivalent” way
● Smaller test set – but equally effective

Basic Method: 
Notice when any element in the partition
will produce the same results 
(ie find the same faults)

EQP: Reduces test cases

Input domain

2

Input domain 
partitioned into four 

sub-domains.

Lecture Notes 5 - Testing 42

1
2

3

4

Large set of
test inputs.

Four test inputs, one 
selected from each 

sub-domain.



8

How to partition?  Example 1
Suppose that program P takes an input 
X, X being an integer.

For X<0 perform task (T1) 

Lecture Notes 5 - Testing 43

For X 0 perform task (T1) 
For X>=0  perform task (T2)

Two sub-domains

One Possible 
Test Case:
X=-3

Another  test case:
X=15

X<0 X>=0

Equivalence class Equivalence class

Lecture Notes 5 -
Testing

44

All test inputs in the X<0 sub-domain are considered 
equivalent.
The assumption is that if one test input in this sub-domain 
reveals an error in the program, so will the others. 
This is true of the test inputs in the X>=0 sub-domain also.

EQP: Basic Process
First you must break the input into sub-
domains (partitions)
● Look at input and determine common properties
● Values with in defined range
● Values outside of the defined range

Lecture Notes 5 - Testing 45

● Extremes
● Try to include input that will force incorrect output

◘ How well does the code perform exception handling

If the sub-domains are well done
● should be able to create a few (or ideally) one test 

case that will represent the entire domain

Include inputs in and out of range

IeInput Test Data
Inputs causing 

anomalous 
behavior

Lecture Notes 5 - Testing 46

OeOutput Set

Outputs which reveal 
the presence of 

defects

System

EQP: Example 2
Input should be a numerical month
● Valid Inputs: 1-12 

What are potential Classes?
● Input within range:  

Lecture Notes 5 - Testing 47

p g
◘1-12

●Out of Range
◘High End: 20, 99, 3-digit, 4-digit
◘Low End: Negative Numbers
◘Alphanumeric
◘Special Characters / Punctuation

1-12

Boundary Value Analysis (BVA)
Select test cases based on the boundaries values

Look for inputs
● On the boundary
● On either side of the boundary

For numeric month example

Lecture Notes 5 - Testing 48

For numeric month example
● Boundary Values

◘ Low End: 0,1,2
◘ High End: 11,12,13

Combining this technique with Equivalence 
Partitioning is much more effective



9

Input
● 5-digit integer between 10,000 and 99,999, 

Partitions
● <10,000
● 10,000-99,999 
● > 10, 000

EQP & BVA

Lecture Notes 5 - Testing 49

Boundary Values
● 00000
● 09,999 –10,000
● 99,998 – 99,999 – 100,000

Outside
● Alphanumeric
● Symbols

Equivalence partitions

Between 4 and 10Less than 4 More than 10

3
4 7

11
10

Number of input values

What about the # 
of digits?

Lecture Notes 5 - Testing 50

Between 10000 and 99999Less than 10000 More than 99999

9999
10000 50000

100000
99999

Input values

Pros & Cons
Pros
● Minimizes test cases & maintains some test 

adequacy
● Forces tester to analyze the input and output 

domain
Cons

Lecture Notes 5 - Testing 51

Cons
● Assumptions of equivalence can be tricky – and 

incorrect
● Doing EQP is easy Doing it well is difficult
● Somewhat subjective – dependent upon the 

testers’ intuition

Picking the correct subdomain can be tricky

Today’s Lecture

Equivalence Partitioning &
Boundary Value Analysis
I t ti T ti

Lecture Notes 5 - Testing 52

Integration Testing
● Top-Down
● Bottom Up

Integration Testing Approaches
Top Down & Bottom Up

● Top-down integration testing 
◘ better at discovering errors in the system architecture
◘ allows a limited demonstration at an early stage in the 

development

B tt

Lecture Notes 5 - Testing 53

● Bottom up 
◘ Often easier to implement

Problems with both approaches. Extra 
code may be required to observe tests

Top-Down Integration Testing

. . .Level 1 Level 1Testing
Sequence

Lecture Notes 5 - Testing 54

Level 2 Level 2 Level 2 Level 2

Level 3 Stubs

Level 2 Stubs



10

Bottom-Up Testing

Test 
Drivers

Level N Level N Level N Level N Level N
Testing

Sequence

Lecture Notes 5 - Testing 55

Level N-1 Level N-1 Level N-1

Test 
Drivers

Which Approach to use?
Top-Down or Bottom Up?

In practice, most integration involves a 
combination of these strategies

Lecture Notes 5 - Testing 56


